江苏工业学院

2009年攻读硕士学位研究生入学考试(初试)试卷

考试科目: <u>物理化学</u> (本科目总分 150 分,考试时间 3 小时) **请考生注意**: 试题解答请务必写在专用"答题纸"上; 其它地方的解答将视为无效答题,不予评分。

一、 (共12 题, 共计30 分)
1 、 一般地说, 难液化的气体如 H_2 、 N_2 等, 其临界温度。(较高、较低)
2、 理想气体从同一初态开始,分别经历绝热可逆膨胀和绝热不可逆膨胀
过程发生相同的体积变化,则该气体经过程后,其终态温度更低。
3、将-5℃的低压水蒸气恒温加压时,可能出现的相态变化为。
4、热力学基本方程 dG =-S dT+Vdp 的适用条件是。
5、乙苯脱氢制苯乙烯的反应为 $C_6H_5C_2H_5(g) \rightleftharpoons C_6H_5C_2H_3(g) + H_2(g)$,
5、 乙本肌会即本乙州时及为 C ₆ 11 ₅ C ₂ 11 ₅ (8) ← C ₆ 11 ₅ C ₂ 11 ₃ (8) + 11 ₂ (8)
当在原料气中掺入水蒸气后,将使苯乙烯的产率。(提高、降低、不变)
6 、一原电池的电池反应为 $2Br^- + Cl_2(p^\theta) \Longrightarrow Br_2(l) + 2Cl^-$,则此原电池的
表示式为。
7、电池充放电时, 电极要发生极化现象。 极化现象主要有两种, 它们是 和 。
8、原电池放电时,随着电流密度增加,其阳极电位将, 阴极电位
将,端电压。
9、与蒸气达平衡的平面液体中有一半径为 r 的气泡。已知平面液体的饱
和蒸汽压为 p ,气泡中的饱和蒸气压为 p, 若忽略液体对气泡的静压力,
则 p_{r} p 。 $(>, =, <)$
10、试写出物理吸附与化学吸附的三个主要区别(1);
(2)
11、胶粒的 ξ 电位又称电位, 其 ξ 越高, 溶胶的稳定性
越(强、弱),加入电解质,可使 ξ (升高或降
低),而其稳定性(增强或减弱)。

12、甲、乙两个不同的化学反应, 其活化能之间的关系为 $E_{a(P)} > E_{a(Z)}$ 。若将两者的温度都从 T_1 升至 T_2 ,则______反应的速率增加得更快。(甲、乙)

二、(16分)

(1) 25°C时, C_2H_4 (g) 的 $\Delta_c H_m^{\Theta} = -1411.0 \text{kJ} \cdot \text{mol}^{-1}$, CO_2 (g) 的 $\Delta_f H_m^{\Theta} = -393.5 \text{kJ} \cdot \text{mol}^{-1}$, H_2O (1) 的 $\Delta_f H_m^{\Theta} = -285.8 \text{kJ} \cdot \text{mol}^{-1}$, 试求 C_2H_4 (g) 的 $\Delta_f H_m^{\Theta}$ 。

(2) 已知 25°C时乙醇 C_2H_5OH (1) 的标准摩尔生成焓 $\Delta_f H_m^{\Theta}$ (C_2H_5OH , 1) =-277.69kJ •mol⁻¹, 标准摩尔燃烧焓 $\Delta_c H_m^{\Theta}$ (C_2H_5OH , 1) =-1366.8kJ •mol⁻¹,二甲醚 (CH_3) ${}_2O$ (g) 的标准摩尔生成焓 $\Delta_f H_m^{\Theta}$ [(CH_3) ${}_2O$, g] =-184.1kJ • mol⁻¹。求 25°C时二甲醚的标准摩尔燃烧焓 $\Delta_c H_m^{\Theta}$ [(CH_3) ${}_2O$, g]。

三、(12分)2mo1 双原子分子理想气体,由 300K、100kPa 的初态连续经历如下的过程变化到终态:

- (1) 先恒容加热至 600K;
- (2) 再恒压冷却至 500K;
- (3) 又绝热可逆膨胀至 400K.

试求整个过程的Q、W、 ΔU 、 ΔH 。

四、(12分)

- (1)101.325kPa 下, -5℃的过冷 C_6 H₆(1)凝固成 C_6 H₆(s)的熵变为 -35.48J K⁻¹mo1⁻¹,焓变为-9874 J mo1⁻¹。已知-5℃时固态 C_6 H₆的饱和蒸气压为 2.28kPa,试求-5℃时过冷 C_6 H₆(l)的饱和蒸气压。
- (2)已知 20 ℃时,液态 C_6H_6 的饱和蒸气压为 9.96 kPa,蒸发热为 33.90 kJ mo1 。设蒸发热不随温度而变化,试据所给数据估算-5 ℃时过冷 C_6H_6 (1) 的饱和蒸气压。

五、(10 分)在温度 TK 时,纯物质液体 A 和 B 的饱和蒸气压分别为 P_A^* 和 P_B^* ,并且 P_A^* > P_B^* ,设二者可以形成理想溶液(即理想液态混合物)。 试证明此温度下溶液的蒸气总压 $P_{\&}$ 介于 P_A^* 与 P_B^* 之间。

六、(12 分)在 $400 \sim 500$ K 温度范围内, 反应 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ 的标准摩尔反应吉氏函数服从如下方程:

 $\Delta_r G_m^{\theta} = (83.68 \times 10^3 - 14.52T \ln T - 72.26T) J \cdot mol^{-1}$

- (1)450K 时将 PCl_5 放入抽空的密闭容器中, 若平衡时总压为 101.325kPa, 试计算 PCl_5 的转化率。
 - (2) 计算 450K 时该反应的 $\Delta_r S_m^{\Theta}$ 和 $\Delta_r H_m^{\Theta}$ 。

七、(16分)水(A)和异丁醇(B)可形成液相部分互溶系统,在 101.325kPa下水和异丁醇的沸点分别为 100 \mathbb{C} 和 118 \mathbb{C} ,其最低共沸温度为 90.0 \mathbb{C} 。在此温度下,液、液、气三相的平衡组成(以 %计)分别为水相 0.10,醇相 0.75,气相 0.65。

- (1) 试画出该系统气、液、液三相的平衡相图的大致形状,并在图上标明各相区内存在的相。
- (2) 试计算在 101. 325kPa 下, 系统中三相共存时的自由度数 (F), 计算时须列出计算式。
- (3) 将 $\frac{1}{1}$ 为 0.30 的 A 和 B 的混合物 500g, 加热至温度刚要达到 90.0 $\frac{1}{1}$ 飞, 试计算各相的质量。
- (4) 若将 屬为 0.08 的溶液精馏, 当塔板数足够多时, 塔顶和塔底各得到什么?
- (5) 采用特殊的工艺流程,可使该部分互溶系统中的 A 和 B 实现完全分离。试画出该工艺流程的示意图。

八、(16分)已知 25℃时电池-)Zn | ZnCl₂ (0.01mol·kg⁻¹) | AgCl (s) | Ag(+的电动势为 1.1566V,

 $E^{\Theta} \{Zn^{2+} | Zn\} = -0.7620V, E^{\Theta} \{C1^{-} | AgC1 (s) | Ag\} = 0.22216V.$

- (1) 写出该电池的电极反应和电池反应;
- (2) 求此 0.01mol kg⁻¹ ZnCl₂溶液的离子平均活度 a_{\pm} ,离子平均活度因子 γ_{\pm} 以及 ZnCl₂作为整体的活度 a_{ZnCl_2}
 - (3) 若有 1mo1Zn 进行电池反应, 电池最多可输出多少电功?
 - (4) 已知 AgC1 的溶度积 $K_{sp}=1.75\times10^{-10}$, 试求 E^{Θ} { Ag^{+} | Ag}。

共4页,第3页。

九、(12分)

(1)273K 时,用木炭吸附 CO 气体。实验测得,当 CO 的平衡压力分别为 24.0 和 41.2kPa 时,每kg木炭吸附 CO 的平衡吸附量分别为 5.567×10⁻³ 和 8.668 × 10^{-3} dm³ (STP)。设该吸附服从兰格缪尔吸附等温式,试计算当木炭表面覆盖率达 70%时,相应的 CO 的平衡压力是多少?

(2)实验测得,H₂在洁净钨表面上的吸附热随表面覆盖率的增加而逐渐减小。试简明回答产生这种现象的原因是什么?

十、(14分) 某温度下,纯 $N_2O_5(g)$ 于体积为 V 的容器中发生如下分解反应: $2N_2O_5(g) \to 4NO_2(g) + O_2(g)$ 此温度下反应的半衰期为 1.40×10^3 s,且与反应物的初始压力无关。

- (1) 求反应的速度常数。
- (2) 若 N_2O_5 (g) 的初始压力为 $60.0 \times 10^3 Pa$, 试求反应开始 10s 和 600s 时系统的总压。